Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Neuropsychiatry Clin Neurosci ; : appineuropsych22010002, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2324932

ABSTRACT

Encephalopathy, a common condition among patients hospitalized with COVID-19, can be a challenge to manage and negatively affect prognosis. While encephalopathy may present clinically as delirium, subsyndromal delirium, or coma and may be a result of systemic causes such as hypoxia, COVID-19 has also been associated with more prolonged encephalopathy due to less common but nevertheless severe complications, such as inflammation of the brain parenchyma (with or without cerebrovascular involvement), demyelination, or seizures, which may be disproportionate to COVID-19 severity and require specific management. Given the large number of patients hospitalized with severe acute respiratory syndrome coronavirus-2 infection, even these relatively unlikely complications are increasingly recognized and are particularly important because they require specific management. Therefore, the aim of this review is to provide pragmatic guidance on the management of COVID-19 encephalopathy through consensus agreement of the Global COVID-19 Neuro Research Coalition. A systematic literature search of MEDLINE, medRxiv, and bioRxiv was conducted between January 1, 2020, and June 21, 2021, with additional review of references cited within the identified bibliographies. A modified Delphi approach was then undertaken to develop recommendations, along with a parallel approach to score the strength of both the recommendations and the supporting evidence. This review presents analysis of contemporaneous evidence for the definition, epidemiology, and pathophysiology of COVID-19 encephalopathy and practical guidance for clinical assessment, investigation, and both acute and long-term management.

2.
Vaccine ; 41(11): 1902-1910, 2023 03 10.
Article in English | MEDLINE | ID: covidwho-2232642

ABSTRACT

This is a Brighton Collaboration case definition of anosmia to be used in the evaluation of adverse events following immunization, and for epidemiologic studies for the assessment of background incidence or hypothesis testing. The case definition was developed by a group of experts convened by the Coalition for Epidemic Preparedness Innovations (CEPI) in the context of active development of SARS-CoV-2 vaccines. The case definition format of the Brighton Collaboration was followed to develop a consensus definition and defined levels of certainty, after an exhaustive review of the literature and expert consultation. The document underwent peer review by the Brighton Collaboration Network and by two expert reviewers prior to submission.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Anosmia/etiology , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Immunization/adverse effects , Data Collection
3.
BMJ Neurol Open ; 4(2): e000309, 2022.
Article in English | MEDLINE | ID: covidwho-1932719

ABSTRACT

Objective: To investigate features of Guillain-Barré syndrome (GBS) following SARS-CoV-2 vaccines and evaluate for a causal link between the two. Methods: We captured cases of GBS after SARS-CoV-2 vaccination through a national, open-access, online surveillance system. For each case, the certainty of GBS was graded using the Brighton criteria, and the relationship to the vaccine was examined using modified WHO Causality Assessment criteria. We compared age distribution of cases with that of prepandemic GBS cases and clinical features with the International GBS Outcome Study (IGOS). Results: Between 1 January and 30 June 2021, we received 67 reports of GBS following the ChAdOx1 vaccine (65 first doses) and three reports following the BNT162b2 vaccine (all first doses). The causal association with the vaccine was classified as probable for 56 (80%, all ChAdOx1), possible for 12 (17%, 10 ChAdOx1) and unlikely for two (3%, 1 ChAdOx1). A greater proportion of cases occurred in the 50-59 age group in comparison with prepandemic GBS. Most common clinical variants were sensorimotor GBS (n=55; 79%) and facial diplegia with paraesthesias (n=10; 14%). 10% (n=7/69) of patients reported an antecedent infection, compared with 77% (n=502/652) of the IGOS cohort (p<0.00001). Facial weakness (63% (n=44/70) vs 36% (n=220/620); p<0.00001) and sensory dysfunction (93% (n=63/68) vs 69% (n=408/588); p=0.00005) were more common but disease severity and outcomes were similar to the IGOS study. Interpretation: Most reports of GBS followed the first dose of ChAdOx1 vaccine. While our study cannot confirm or refute causation, this observation, together with the absence of alternative aetiologies, different than expected age distribution and the presence of unusual clinical features support a causal link. Clinicians and surveillance bodies should remain vigilant to the possibility of this very rare adverse event and its atypical variants.

4.
Vaccine ; 40(32): 4479-4487, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1882615

ABSTRACT

INTRODUCTION: We investigated the potential association of COVID-19 vaccination with three acute neurological events: Guillain-Barré syndrome (GBS), transverse myelitis and Bell's palsy. METHODS: With the approval of NHS England we analysed primary care data from >17 million patients in England linked to emergency care, hospital admission and mortality records in the OpenSAFELY platform. Separately for each vaccine brand, we used a self-controlled case series design to estimate the incidence rate ratio for each outcome in the period following vaccination (4-42 days for GBS, 4-28 days for transverse myelitis and Bell's palsy) compared to a within-person baseline, using conditional Poisson regression. RESULTS: Among 7,783,441 ChAdOx1 vaccinees, there was an increased rate of GBS (N = 517; incidence rate ratio 2·85; 95% CI2·33-3·47) and Bell's palsy (N = 5,350; 1·39; 1·27-1·53) following a first dose of ChAdOx1 vaccine, corresponding to 11.0 additional cases of GBS and 17.9 cases of Bell's palsy per 1 million vaccinees if causal. For GBS this applied to the first, but not the second, dose. There was no clear evidence of an association of ChAdOx1 vaccination with transverse myelitis (N = 199; 1·51; 0·96-2·37). Among 5,729,152 BNT162b2 vaccinees, there was no evidence of any association with GBS (N = 283; 1·09; 0·75-1·57), transverse myelitis (N = 109; 1·62; 0·86-3·03) or Bell's palsy (N = 3,609; 0·89; 0·76-1·03). Among 255,446 mRNA-1273 vaccine recipients there was no evidence of an association with Bell's palsy (N = 78; 0·88, 0·32-2·42). CONCLUSIONS: COVID-19 vaccines save lives, but it is important to understand rare adverse events. We observed a short-term increased rate of Guillain-Barré syndrome and Bell's palsy after first dose of ChAdOx1 vaccine. The absolute risk, assuming a causal effect attributable to vaccination, was low.


Subject(s)
Bell Palsy , COVID-19 Vaccines , COVID-19 , Facial Paralysis , Guillain-Barre Syndrome , Myelitis, Transverse , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Bell Palsy/chemically induced , Bell Palsy/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , England , Facial Paralysis/chemically induced , Facial Paralysis/epidemiology , Guillain-Barre Syndrome/chemically induced , Guillain-Barre Syndrome/epidemiology , Humans , Myelitis, Transverse/complications , Vaccination/adverse effects
5.
PLoS One ; 17(6): e0263595, 2022.
Article in English | MEDLINE | ID: covidwho-1875082

ABSTRACT

BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission.


Subject(s)
COVID-19 , Stroke , COVID-19/complications , COVID-19/therapy , Hospitalization , Humans , Prognosis , Risk Factors
6.
Cephalalgia ; 42(11-12): 1207-1217, 2022 10.
Article in English | MEDLINE | ID: covidwho-1832990

ABSTRACT

BACKGROUND: Delayed-onset of headache seems a specific feature of cerebrovascular events after COVID-19 vaccines. METHODS: All consecutive events reported to the United States Vaccine Adverse Reporting System following COVID-19 vaccines (1 January to 24 June 2021), were assessed. The timing of headache onset post-vaccination in subjects with and without concomitant cerebrovascular events, including cerebral venous thrombosis, ischemic stroke, and intracranial haemorrhage was analysed. The diagnostic accuracy in predicting concurrent cerebrovascular events of the guideline- proposed threshold of three-days from vaccination to headache onset was evaluated. RESULTS: There were 314,610 events following 306,907,697 COVID-19 vaccine doses, including 41,700 headaches, and 178/41,700 (0.4%) cerebrovascular events. The median time between the vaccination and the headache onset was shorter in isolated headache (1 day vs. 4 (in cerebral venous thrombosis), 3 (in ischemic stroke), or 10 (in intracranial hemorrhage) days, all P < 0.001). Delayed onset of headache had an area under the curve of 0.83 (95% CI: 0.75-0.97) for cerebral venous thrombosis, 0.70 (95% CI: 0.63-76) for ischemic stroke and 0.76 (95% CI: 0.67-84) for intracranial hemorrhage, and >99% negative predictive value. CONCLUSION: Headache following COVID-19 vaccination occurs within 1 day and is rarely associated with cerebrovascular events. Delayed onset of headache 3 days post-vaccination was an accurate diagnostic biomarker for the occurrence of a concomitant cerebrovascular events.


Subject(s)
COVID-19 , Ischemic Stroke , Vaccines , Venous Thrombosis , Adverse Drug Reaction Reporting Systems , Biomarkers , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Headache/chemically induced , Headache/etiology , Humans , Intracranial Hemorrhages/chemically induced , United States , Vaccines/adverse effects
7.
Ann Neurol ; 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1756553

ABSTRACT

OBJECTIVE: To identify the rates of neurological events following administration of mRNA (Pfizer, Moderna) or adenovirus vector (Janssen) vaccines in the U.S.. METHODS: We utilized publicly available data from the U.S. Vaccine Adverse Event Reporting System (VAERS) collected between January 1, 2021-June 14, 2021. All free text symptoms that were reported within 42 days of vaccine administration were manually reviewed and grouped into 36 individual neurological diagnostic categories. Post-vaccination neurological event rates were compared between vaccine types and to age-matched baseline incidence rates in the U.S. and rates of neurological events following COVID. RESULTS: Of 306,907,697 COVID vaccine doses administered during the study timeframe, 314,610 (0.1%) people reported any adverse event and 105,214 (0.03%) reported neurological adverse events in a median of 1 day (IQR0-3) from inoculation. Guillain-Barre Syndrome (GBS), and cerebral venous thrombosis (CVT) occurred in fewer than 1 per 1,000,000 doses. Significantly more neurological adverse events were reported following Janssen (Ad26.COV2.S) vaccination compared to either Pfizer-BioNtech (BNT162b2) or Moderna (mRNA-1273; 0.15% versus 0.03% versus 0.03% of doses, respectively,P<0.0001). The observed-to-expected ratios for GBS, CVT and seizure following Janssen vaccination were ≥1.5-fold higher than background rates. However, the rate of neurological events after acute SARS-CoV-2 infection was up to 617-fold higher than after COVID vaccination. INTERPRETATION: Reports of serious neurological events following COVID vaccination are rare. GBS, CVT and seizure may occur at higher than background rates following Janssen vaccination. Despite this, rates of neurological complications following acute SARS-CoV-2 infection are up to 617-fold higher than after COVID vaccination. This article is protected by copyright. All rights reserved.

8.
Lancet ; 398(10306): 1147-1156, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1437625

ABSTRACT

BACKGROUND: A new syndrome of vaccine-induced immune thrombotic thrombocytopenia (VITT) has emerged as a rare side-effect of vaccination against COVID-19. Cerebral venous thrombosis is the most common manifestation of this syndrome but, to our knowledge, has not previously been described in detail. We aimed to document the features of post-vaccination cerebral venous thrombosis with and without VITT and to assess whether VITT is associated with poorer outcomes. METHODS: For this multicentre cohort study, clinicians were asked to submit all cases in which COVID-19 vaccination preceded the onset of cerebral venous thrombosis, regardless of the type of vaccine, interval between vaccine and onset of cerebral venous thrombosis symptoms, or blood test results. We collected clinical characteristics, laboratory results (including the results of tests for anti-platelet factor 4 antibodies where available), and radiological features at hospital admission of patients with cerebral venous thrombosis after vaccination against COVID-19, with no exclusion criteria. We defined cerebral venous thrombosis cases as VITT-associated if the lowest platelet count recorded during admission was below 150 × 109 per L and, if the D-dimer was measured, the highest value recorded was greater than 2000 µg/L. We compared the VITT and non-VITT groups for the proportion of patients who had died or were dependent on others to help them with their activities of daily living (modified Rankin score 3-6) at the end of hospital admission (the primary outcome of the study). The VITT group were also compared with a large cohort of patients with cerebral venous thrombosis described in the International Study on Cerebral Vein and Dural Sinus Thrombosis. FINDINGS: Between April 1 and May 20, 2021, we received data on 99 patients from collaborators in 43 hospitals across the UK. Four patients were excluded because they did not have definitive evidence of cerebral venous thrombosis on imaging. Of the remaining 95 patients, 70 had VITT and 25 did not. The median age of the VITT group (47 years, IQR 32-55) was lower than in the non-VITT group (57 years; 41-62; p=0·0045). Patients with VITT-associated cerebral venous thrombosis had more intracranial veins thrombosed (median three, IQR 2-4) than non-VITT patients (two, 2-3; p=0·041) and more frequently had extracranial thrombosis (31 [44%] of 70 patients) compared with non-VITT patients (one [4%] of 25 patients; p=0·0003). The primary outcome of death or dependency occurred more frequently in patients with VITT-associated cerebral venous thrombosis (33 [47%] of 70 patients) compared with the non-VITT control group (four [16%] of 25 patients; p=0·0061). This adverse outcome was less frequent in patients with VITT who received non-heparin anticoagulants (18 [36%] of 50 patients) compared with those who did not (15 [75%] of 20 patients; p=0·0031), and in those who received intravenous immunoglobulin (22 [40%] of 55 patients) compared with those who did not (11 [73%] of 15 patients; p=0·022). INTERPRETATION: Cerebral venous thrombosis is more severe in the context of VITT. Non-heparin anticoagulants and immunoglobulin treatment might improve outcomes of VITT-associated cerebral venous thrombosis. Since existing criteria excluded some patients with otherwise typical VITT-associated cerebral venous thrombosis, we propose new diagnostic criteria that are more appropriate. FUNDING: None.


Subject(s)
COVID-19 Vaccines/adverse effects , Intracranial Thrombosis/epidemiology , Purpura, Thrombocytopenic, Idiopathic/epidemiology , Vaccination/adverse effects , Adult , COVID-19 Vaccines/immunology , Cohort Studies , Female , Fibrin Fibrinogen Degradation Products , Humans , Intracranial Thrombosis/drug therapy , Intracranial Thrombosis/mortality , Male , Middle Aged , Platelet Count , Purpura, Thrombocytopenic, Idiopathic/drug therapy , SARS-CoV-2 , United Kingdom/epidemiology , Venous Thrombosis/drug therapy , Venous Thrombosis/epidemiology
10.
J Neurol Sci ; 427: 117532, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1253235

ABSTRACT

BACKGROUND: Vaccine induced immune mediated thrombocytopenia or VITT, is a recent and rare phenomenon of thrombosis with thrombocytopenia, frequently including cerebral venous thromboses (CVT), that has been described following vaccination with adenovirus vaccines ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2·S Johnson and Johnson (Janssen/J&J). The evaluation and management of suspected cases of CVT post COVID-19 vaccination are critical skills for a broad range of healthcare providers. METHODS: A collaborative comprehensive review of literature was conducted among a global group of expert neurologists and hematologists. FINDINGS: Strategies for rapid evaluation and treatment of the CVT in the context of possible VITT exist, including inflammatory marker measurements, PF4 assays, and non-heparin anticoagulation.


Subject(s)
COVID-19 , Venous Thrombosis , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccination/adverse effects , Venous Thrombosis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL